Surface Mount Power Inductors

Physical Parameters

<table>
<thead>
<tr>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.350 to 0.370</td>
</tr>
<tr>
<td>B</td>
<td>0.180 to 0.200</td>
</tr>
<tr>
<td>C</td>
<td>0.165 to 0.185</td>
</tr>
<tr>
<td>D</td>
<td>0.050 Min.</td>
</tr>
<tr>
<td>E</td>
<td>0.050 to 0.070</td>
</tr>
<tr>
<td>F</td>
<td>0.200 (Ref. Only)</td>
</tr>
</tbody>
</table>

Dimensions *A* and *C* are over terminals.

Operating Temperature Range -55°C to +130°C

Current Rating at 85°C Ambient 45°C Rise

Maximum Power Dissipation at 90°C 0.414 W

Inductance Measured at 1VAC with no DC Current

Incremental Current The current at which the inductance will be decreased by a maximum of 10% from its initial DC value.

Marking Delevan; dash number followed by a P; and date code/lot symbol (YYWW). Note: An R before the date code/lot symbol indicates an RoHS Compliant choke.

Terminal Material and Final Finish

Series P3519: (Tin-Lead) Sn63Pb37 over (Copper) Cu

Series P3519R: (Tin-Silver-Copper) Sn96.5Ag3.0Cu0.5 over (Copper) Cu

Weight/Mass 0.490 Grams Maximum

Packaging Tape & reel (24mm): 13” reel, 1500 pieces max.

Tolerances:

- J = ±5% K = ±10%

(±5% Tolerance is Standard for Values Above 0.68uH)

Complete part # must include series # PLUS the dash #

All product specifications and data contained herein are subject to change without notice to improve reliability, function, performance, design or otherwise.

Made in the U.S.A.

270 Quaker Rd., East Aurora NY 14052 • Phone 716-652-3600 • Fax 716-652-4814 • E-mail: apisales@delevan.com • www.delevan.com

Power Inductors
Surface Mount Power Inductors

Inductance vs. Frequency

- **SERIES P3 51 9R**
- **P3 519**

Power Inductors

270 Quaker Rd., East Aurora NY 14052 • Phone 716-652-3600 • Fax 716-652-4814 • E-mail: apisales@delevan.com • www.delevan.com
Surface Mount Power Inductors

Inductance vs. Frequency

The above waveforms have been composed from data taken from a Wayne Kerr 3260B Precision Magnetics Analyzer and Hewlett Packard 4191A RF Impedance Analyzer.